Investigating the Characteristics of FORMOSAT-7/COSMIC-2 Radio Occultation Data

Shu-Ya Chen^{1*}, Hsiu-Wen Li¹, Shen-Cha Hsu², Chian-Yi Liu^{1,2}, Ching-Yuang Huang^{1,3}, Cheng-Yung Huang⁴, Po-Hsiung Lin⁵, Jia-Ping Cheng⁶, Hsu-Hui Ho⁷, Ching-Chieh Lin⁷, and Jyun-Ying Huang⁷

¹ GPS Science and Application Research Center, National Central University
² Center for Space and Remote Sensing Research, National Central University
³ Department of Atmospheric Sciences, National Central University
⁴ National Space Organization, National Applied Research Laboratories
⁵ Department of Atmospheric Sciences, National Taiwan University
⁶ Central Weather Bureau
⁷Taiwan Analysis Center for COSMIC (TACC), Central Weather Bureau

Daily atmospheric profiles

The FORMOSAT-7/COSMIC-2 constellation was launched on 25 June 2019 and the first data was received after three weeks.

Data density during one month

FS3 Mar. 2009

FS7 Mar. 2020

Introduction

- FORMOSAT-7/COSMIC-2 (FS7/C-2) provides lots of radio occultation (RO) soundings over the tropical and subtropical region where is mostly covered by ocean.
- The high vertical resolution and quality of GNSS RO data could help detect the atmosphere temperature and moisture.
- Because of the abounded RO observations from FS-7/ C-2, we attend to investigate the characteristics of FS-7/C-2 RO data in the troposphere, that could be useful for the future application of FS7/C-2 data in the numerical weather prediction.

Spatial Distribution and Penetration Depth

Height above topography

Data collection for verification Oct. 2019-Mar. 2020 (6 m.)

Impact of spatiotemporal distance

- Differences increase with spatial distance
- Insensitivity for temporal departure
- > Co-located window: \pm 3h and \pm 100 km

Verification against Metop, KOMPSAT-5, radiosonde

Bias – solid line RMSE – dashed line 國立中央大學全球定位科學與應用研究。 GPSARC GPS Science and Application Research Center

Verification against global analysis (ERA5, NCEP fnl), satellite radiance (JPSS-1, SNPP)

Bias and RMSE in temperature (vertical average: sfc.-200 hPa)

Bias and STD in vapor pressure (vertical average: sfc.-500 hPa)

Independent verification against dropsonde and radiosonde

TROPS FS7 Verification (Metop, KOMPSAT-5, radiosonde)

Summary

- From the statistics, FS7 RO soundings have better penetration depth than FS3, i.e., FS7 provides more than 80% of RO soundings below 1 km, and it is about 40% for the FS3.
- The verifications against multiple soundings show consistent characteristics with a positive temperature bias of 0.5 K and a negative moisture bias of 2 hPa in the troposphere. In comparison, the verification against global analyses have smaller differences with FS7.
- The verifications against individual observations over ocean also show a promising data quality in FS7.

Thank you!

